MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL
 Paper Code : PCC-CS 403/PCC-CS403/PCC-CSBS401/PCCCS403 Formal Language \& Automata Theory UPID : 004423

The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following :
[$1 \times 10=10$]
(I) NFA, in its name has 'non-deterministic' because of \qquad
(II) The non- Kleene Star operation accepts the following string of finite length over set $A=\{0,1\} \mid$ where string s contains even number of 0 and 1
(III) Language of finite automata is of which type?
(IV) The concept of FSA is much used in \qquad part of the compiler
(V) FSM can recognize \qquad
(VI) Consider the following language,

$$
\mathrm{L}=\{\text { anbn } \mid \mathrm{n}=1\}
$$

L is \qquad
(VII) Set of regular languages over a given alphabet set is closed under \qquad
(VIII) Consider the grammar:
$S \rightarrow A B C c \mid A b c$
$B A \rightarrow A B$
$\mathrm{Bb} \rightarrow \mathrm{bb}$
$\mathrm{Ab} \rightarrow \mathrm{ab}$
$A a \rightarrow a a$
Write the sentences can be derived by this grammar?
(IX) Consider the following grammar
$S \rightarrow A x / B y$
A $\rightarrow \mathrm{By} / \mathrm{Cw}$
B $\rightarrow x / B w$ C-->y
Write the regular expressions describe the same set of strings as the grammar.
(X) Let $S=\{a, b, c, d, e\}$. The number of strings is \qquad in S* of length 4 such that no symbol is used more than once in a string
(XI) Given a grammar G , a production of G with a dot at some position of the right side is called \qquad
(XII) Number of states of the FSM required to simulate behaviour of a computer with a memory capable of storing " m " words, each of length ' n ' is \qquad
Group-B (Short Answer Type Question)
Answer any three of the following :
2. Design a DFA where every string either starts with 01 or ends with 01 over the alphabet set $\{0,1\}$.
3. Write the regular expression for the language $L=\left\{a^{n} \mid n>0\right\}$.
4. Construct an NFA for the regular expression
$(0+1)^{*} 00(0+1)^{*}$
5. Design a PDA for the language $L=\left\{W_{c} W^{R} \mid w \in\{a, b\}^{*}\right\}$.
6. Convert the following NFA to DFA.

Group-C (Long Answer Type Question)
Answer any three of the following :
7. (a) Design a DFA where each and every string end with '001' over the alphabet set $\{0,1\}$.
(b) Obtain the regular expression for the following DFA.

(c) Consider the following e-NFA:

Compute the e-closure of each state. Convert the NFA to DFA.

δ	\in	a	b
\rightarrow	$\{r\}$	$\{q\}$	$\{p, r\}$
q	ϕ	$\{p\}$	ϕ
${ }^{*} r$	$\{p, q\}$	$\{r\}$	$\{p\}$

8. (a) Define Chomsky normal form and convert the following CFG to CNF.
$S \rightarrow a S b|a b| A a, A \rightarrow a a b$
(b) What is useless production? Eliminate \in, unit and useless production from following grammar.

$$
A \rightarrow b A|B b a| a a, B \rightarrow a b a|b| D, C \rightarrow C A|A C| B, D \rightarrow a \mid \in
$$

9. (a) Define Deterministic PDA and Non-deterministic PDA.
(b) Construct a PDA for the grammar
$S \rightarrow a A A, A \rightarrow a S|b S| a$
10. (a) State the Pumping lemma for the Regular Language (RL).
(b) State the Pumping lemma for the Context Free Language (CFL).
(c) Prove that the given language is not regular.

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}}>=0\right\}
$$

11. Transform the CFG into $G N F$, given $G=\left(\left\{A_{1}, A_{2}, A_{3}\right\},\{a, b\}, P, A_{1}\right)$ and production P as,
$A_{1} \rightarrow A_{2} A_{3}, A_{2} \rightarrow A_{3} A_{1}\left|b, A_{3} \rightarrow A_{1} A_{2}\right| a$
